Formula and formulae of solid shapes and plane shapes

1 answer

Here are the key formulas for both solid shapes and plane shapes:

Plane Shapes (2D)

  1. Square:

    • Area: \( A = s^2 \)
    • Perimeter: \( P = 4s \)
    • (where \( s \) is the length of a side)
  2. Rectangle:

    • Area: \( A = l \times w \)
    • Perimeter: \( P = 2(l + w) \)
    • (where \( l \) is the length and \( w \) is the width)
  3. Triangle:

    • Area: \( A = \frac{1}{2} b h \)
    • Perimeter: \( P = a + b + c \)
    • (where \( b \) is the base, \( h \) is the height, and \( a, b, c \) are the lengths of the sides)
  4. Circle:

    • Area: \( A = \pi r^2 \)
    • Circumference: \( C = 2\pi r \)
    • (where \( r \) is the radius)
  5. Trapezoid:

    • Area: \( A = \frac{1}{2} (b_1 + b_2) h \)
    • Perimeter: \( P = a + b_1 + b_2 + c \)
    • (where \( b_1 \) and \( b_2 \) are the lengths of the parallel sides, and \( h \) is the height)

Solid Shapes (3D)

  1. Cube:

    • Volume: \( V = s^3 \)
    • Surface Area: \( SA = 6s^2 \)
    • (where \( s \) is the length of a side)
  2. Rectangular Prism:

    • Volume: \( V = l \times w \times h \)
    • Surface Area: \( SA = 2(lw + lh + wh) \)
    • (where \( l \) is the length, \( w \) is the width, and \( h \) is the height)
  3. Cylinder:

    • Volume: \( V = \pi r^2 h \)
    • Surface Area: \( SA = 2\pi r(h + r) \)
    • (where \( r \) is the radius of the base and \( h \) is the height)
  4. Sphere:

    • Volume: \( V = \frac{4}{3} \pi r^3 \)
    • Surface Area: \( SA = 4\pi r^2 \)
    • (where \( r \) is the radius)
  5. Cone:

    • Volume: \( V = \frac{1}{3} \pi r^2 h \)
    • Surface Area: \( SA = \pi r (r + l) \)
    • (where \( r \) is the radius of the base, \( h \) is the height, and \( l \) is the slant height)
  6. Pyramid:

    • Volume: \( V = \frac{1}{3} b h \)
    • Surface Area: \( SA = b + \frac{1}{2} P l \)
    • (where \( b \) is the area of the base, \( h \) is the height, \( P \) is the perimeter of the base, and \( l \) is the slant height)

Summary

These formulas allow you to calculate the area, perimeter, volume, and surface area of various geometric shapes, both in two-dimensional and three-dimensional contexts.