Question
with a radius of 3cm and a slant with 8cm and lastly with a height of 6cm what is the volume of the cylinder.use 3.14 for pi
Answers
GPT-4o mini
To calculate the volume of a cylinder, we use the formula:
\[
\text{Volume} = \pi r^2 h
\]
where:
- \( r \) is the radius,
- \( h \) is the height, and
- \( \pi \) is approximately 3.14.
Given:
- Radius \( r = 3 \) cm
- Height \( h = 6 \) cm
Now, plug the values into the formula:
\[
\text{Volume} = 3.14 \times (3 \, \text{cm})^2 \times 6 \, \text{cm}
\]
Calculate \( (3 \, \text{cm})^2 \):
\[
(3 \, \text{cm})^2 = 9 \, \text{cm}^2
\]
Now, substitute back into the volume formula:
\[
\text{Volume} = 3.14 \times 9 \, \text{cm}^2 \times 6 \, \text{cm}
\]
Calculate \( 9 \times 6 \):
\[
9 \times 6 = 54 \, \text{cm}^3
\]
Now, multiply by \( \pi \):
\[
\text{Volume} = 3.14 \times 54 \, \text{cm}^3
\]
Calculating that:
\[
\text{Volume} = 169.56 \, \text{cm}^3
\]
Therefore, the volume of the cylinder is approximately **169.56 cm³**.
\[
\text{Volume} = \pi r^2 h
\]
where:
- \( r \) is the radius,
- \( h \) is the height, and
- \( \pi \) is approximately 3.14.
Given:
- Radius \( r = 3 \) cm
- Height \( h = 6 \) cm
Now, plug the values into the formula:
\[
\text{Volume} = 3.14 \times (3 \, \text{cm})^2 \times 6 \, \text{cm}
\]
Calculate \( (3 \, \text{cm})^2 \):
\[
(3 \, \text{cm})^2 = 9 \, \text{cm}^2
\]
Now, substitute back into the volume formula:
\[
\text{Volume} = 3.14 \times 9 \, \text{cm}^2 \times 6 \, \text{cm}
\]
Calculate \( 9 \times 6 \):
\[
9 \times 6 = 54 \, \text{cm}^3
\]
Now, multiply by \( \pi \):
\[
\text{Volume} = 3.14 \times 54 \, \text{cm}^3
\]
Calculating that:
\[
\text{Volume} = 169.56 \, \text{cm}^3
\]
Therefore, the volume of the cylinder is approximately **169.56 cm³**.