Expand 25(−5c+10).(1 point)

Responses

2c−4
2c minus 4

−2c+4
negative 2c plus 4

−2c+10
negative 2c plus 10

2c−10

3 answers

To expand the expression \( 25(-5c + 10) \), you need to distribute 25 to both terms inside the parentheses:

\[ 25 \times (-5c) + 25 \times 10 \]

Calculating each term:

  1. \( 25 \times -5c = -125c \)
  2. \( 25 \times 10 = 250 \)

Putting it all together, we have:

\[ -125c + 250 \]

Looking at the options provided, it seems none of them match the result of the expansion directly. However, if you were to factor or simplify further, they might align in different contexts.

For clarity:

  • The correct expanded form is \( -125c + 250 \).

If this isn't part of the current options, please double-check the prompt or provide more context.

Choose the closest option

Given the options you've provided and the expansion we did, let's compare their forms to see which is closest:

  1. \(2c−4\)
  2. \(-2c+4\)
  3. \(-2c+10\)
  4. \(2c−10\)

The expanded form we calculated is \(-125c + 250\). None of the options are exactly the same, but if we need to choose the closest option based on what was provided, all options are quite far from \(-125c + 250\).

However, considering the sign and the general structure of the coefficients, the best option would likely be:

  • \(-2c + 10\)

While it is significantly different numerically, it is the only one that has a negative coefficient in front of \(c\).

If you can't use further context or need something specific among these choices, please clarify!