To find the product of the complex numbers \(5i\) and \(4i\), we can multiply them directly:
\[ 5i \times 4i = (5 \times 4) \times (i \times i) = 20 \times i^2 \]
Since \(i^2 = -1\), we can substitute that in:
\[ 20 \times i^2 = 20 \times (-1) = -20 \]
So the product of \(5i\) and \(4i\) is \(-20\).
Neither option \(A. 20\) nor \(B. 20i\) is equivalent to \(-20\). If we had to check which expressions are equivalent to the product, the answer would be \(-20\) (not provided among the options listed).
If there is a misunderstanding in your question or if there are additional options, please clarify!