According to Boyle's law, PV = k, what was the pressure to the nearest tenth at the time of the first measurement given the following information?

V1
= 7,450 mL
P2
= 8.25 atm
V2
= 1,645 mL

(1 point)
Responses

37.4 atm

37.4 atm

4.52 atm

4.52 atm

0.5 atm

0.5 atm

1.8 atm

1 answer

Boyle's Law states that the product of pressure (P) and volume (V) of a gas is a constant (k) at constant temperature. According to the equation \( PV = k \), we can determine the unknown pressure \( P_1 \) using the following relationship:

\[ P_1 V_1 = P_2 V_2 \]

Rearranging this equation to solve for \( P_1 \):

\[ P_1 = \frac{P_2 V_2}{V_1} \]

Now, substituting the known values into the equation:

  • \( P_2 = 8.25 \) atm
  • \( V_2 = 1,645 \) mL
  • \( V_1 = 7,450 \) mL

\[ P_1 = \frac{8.25 , \text{atm} \times 1,645 , \text{mL}}{7,450 , \text{mL}} \]

Calculating \( P_1 \):

\[ P_1 = \frac{8.25 \times 1,645}{7,450} \approx \frac{13,590.25}{7,450} \approx 1.8 , \text{atm} \]

Thus, the pressure to the nearest tenth at the time of the first measurement is:

1.8 atm.