To find the distance around the track (d) using an appropriate form, we can use the formula for the circumference of a circle, which is:
\[ C = 2\pi r \]
However, since you're providing specific numbers here (4 and 9.6) without any additional context, it seems you might want an equation in a form that includes these numbers.
Let’s consider:
- If we assume that 4 is the number of laps around the track and 9.6 is the total distance in kilometers, we can express this relationship as follows:
\[ d = 4 \times 9.6 \]
So, the equation that can be used to find \(d\) would be:
\[ d = 4 \cdot 9.6 \]
Now, we can calculate \(d\):
\[ d = 4 \cdot 9.6 = 38.4 \text{ kilometers} \]
Thus, \(d = 38.4\) kilometers.