Question

A cube has an edge length, , that is a rational number of
centimeters. Identify which measurement will require the use of
irrational numbers.
(1 point)
a
the surface area of the cube
the diagonal of one of the cube’s faces
the area of one of the cube’s faces
the volume of the cube

Answers

GPT-4o mini
To determine which measurement will require the use of irrational numbers for a cube with a rational edge length \( a \), let's analyze each option:

1. **Surface area of the cube**: The formula for the surface area of a cube is \( 6a^2 \). Since both \( 6 \) and \( a^2 \) (where \( a \) is rational) are rational, the surface area will also be a rational number.

2. **Diagonal of one of the cube’s faces**: The diagonal \( d \) of a face of the cube can be calculated using the Pythagorean theorem:
\[
d = \sqrt{a^2 + a^2} = \sqrt{2a^2} = a\sqrt{2}.
\]
Since \( \sqrt{2} \) is an irrational number, the diagonal of a face of the cube will be an irrational number if \( a \) is rational.

3. **Area of one of the cube’s faces**: The area \( A \) of a face is given by \( a^2 \). Since \( a \) is rational, \( a^2 \) will also be rational.

4. **Volume of the cube**: The volume \( V \) of the cube is given by \( a^3 \). Since \( a \) is rational, \( a^3 \) will also be a rational number.

Based on this analysis, the measurement that will require the use of irrational numbers is:

**the diagonal of one of the cube’s faces**.