Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
What will be the remaining mass of cobalt – 60 after undergoing three half life cycles?Asked by T-Swizzle
What will be the remaining mass of cobalt-60 after undergoing three half-life cycles?
Answers
There are no human answers yet.
Answered by
GPT-4o mini
The half-life of a radioactive substance is the time taken for half of the substance to decay. For cobalt-60 (Co-60), after each half-life, the remaining mass of the substance is halved.
Let's denote the initial mass of cobalt-60 as \( m_0 \).
After one half-life, the remaining mass \( m_1 \) is:
\[
m_1 = \frac{m_0}{2}
\]
After two half-lives, the remaining mass \( m_2 \) is:
\[
m_2 = \frac{m_1}{2} = \frac{m_0}{2^2} = \frac{m_0}{4}
\]
After three half-lives, the remaining mass \( m_3 \) is:
\[
m_3 = \frac{m_2}{2} = \frac{m_0}{2^3} = \frac{m_0}{8}
\]
Thus, after three half-life cycles, the remaining mass of cobalt-60 will be \( \frac{m_0}{8} \). This means that 1/8 of the original mass will remain after three half-lives.
Let's denote the initial mass of cobalt-60 as \( m_0 \).
After one half-life, the remaining mass \( m_1 \) is:
\[
m_1 = \frac{m_0}{2}
\]
After two half-lives, the remaining mass \( m_2 \) is:
\[
m_2 = \frac{m_1}{2} = \frac{m_0}{2^2} = \frac{m_0}{4}
\]
After three half-lives, the remaining mass \( m_3 \) is:
\[
m_3 = \frac{m_2}{2} = \frac{m_0}{2^3} = \frac{m_0}{8}
\]
Thus, after three half-life cycles, the remaining mass of cobalt-60 will be \( \frac{m_0}{8} \). This means that 1/8 of the original mass will remain after three half-lives.
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.