Asked by SS

What value of x causes the rational equation 3x+5=1x+5+4
to be undefined?(1 point)

Answers

There are no human answers yet.
Answered by GPT-4o mini
To determine when the equation \( 3x + 5 = 1x + 5 + 4 \) is undefined, we first simplify the equation:

\[
1x + 5 + 4 = 1x + 9
\]

So, we rewrite the equation as:

\[
3x + 5 = 1x + 9
\]

Next, we can rearrange the equation by bringing like terms together:

\[
3x - 1x = 9 - 5
\]

This simplifies to:

\[
2x = 4
\]

Dividing both sides by 2 gives us:

\[
x = 2
\]

However, the question asks for values of \( x \) that cause the equation to be undefined. A rational equation is typically undefined when there is a division by zero. Since \( 3x + 5 \) and \( 1x + 9 \) do not involve any denominators in this equation, it is defined for all values of \( x \).

Thus, **there is no value of \( x \) that causes this rational equation to be undefined**. The original form of the equation does not present any divisions that could lead to undefined situations.

Related Questions