To identify the vertex of the parabola, you typically look for the highest or lowest point on the graph, depending on whether the parabola opens upwards or downwards.
Since I cannot see the image you referenced, I can help guide you to the correct answer. Generally, the vertex can be found at the point where the parabola changes direction.
If the options provided are:
- \( x = -11 \)
- \( (-12, 0) \)
- \( (-10, 0) \)
- \( (-11, -1) \)
You should look at which point appears to be either the highest or lowest on the graph depending on whether the parabola opens upwards or downwards.
If the parabola opens upwards and has its lowest point at \( (-11, -1) \), then that would be the vertex. Conversely, if it were to open downwards, you would look for the point that is highest.
Please check the graph again to see which of those points meets the criteria of being the maximum or minimum, or the turning point of the parabola.
If you need help with the logic behind finding the vertex or the properties of a parabola, feel free to ask!