C (4,7)

B (8,2)
A (2,2)

The three medians of triangle ABC meet a single point. What is the point of the centroid? Express all results in fractions.

centroid = ( _, _)

1 answer

To find the centroid of triangle ABC, we need to calculate the average of the x-coordinates and the average of the y-coordinates of the vertices A, B, and C.

The coordinates of the points are:

  • A(2, 2)
  • B(8, 2)
  • C(4, 7)

The formula for the centroid G of a triangle with vertices at (x1,y1), (x2,y2), and (x3,y3) is given by:

G=(x1+x2+x33,y1+y2+y33)

Substituting the coordinates of points A, B, and C into the formula:

  1. Calculate the average of the x-coordinates: xG=2+8+43=143

  2. Calculate the average of the y-coordinates: yG=2+2+73=113

Thus, the coordinates of the centroid G are:

G=(143,113)

Therefore, the final answer is:

centroid=(143,113)