To determine the least number of fruits Sania must slice to reach her goal, let's first calculate the points she earns from popping 30 balloons.
Each balloon popped gives Sania 7 points. Therefore, if she pops 30 balloons, the total points from popping balloons is:
\[ B = 30 \quad \text{(number of balloons)} \] \[ \text{Points from balloons} = 7B = 7 \times 30 = 210 \]
Now, the total points she needs to exceed is given by the inequality:
\[ 7B + 13F > 650 \]
Substituting the points from popping balloons into the equation, we have:
\[ 210 + 13F > 650 \]
To isolate \(F\), subtract 210 from both sides:
\[ 13F > 650 - 210 \] \[ 13F > 440 \]
Now, divide both sides by 13 to solve for \(F\):
\[ F > \frac{440}{13} \approx 33.846 \]
Since \(F\) must be a whole number, we take the next whole number greater than 33.846, which is 34. Thus, Sania must slice at least 34 fruits.
Hence, the correct answer is:
(Choice D) Sania must slice at least 34 fruits.