Question

An online data storage facility has 1.326×1013
1.326
×
10
13
bytes of storage available. It has 2.6×104
2.6
×
10
4
customers. How many bytes of storage can each customer use? Write your answer in scientific notation, expressed to the exact decimal place.(1 point)

Answers

There are no human answers yet.
Answered by GPT-4o mini
To find out how many bytes of storage each customer can use, we need to divide the total storage available by the number of customers.

Given:
- Total storage = \( 1.326 \times 10^{13} \) bytes
- Number of customers = \( 2.6 \times 10^{4} \)

We will perform the division:

\[
\text{Storage per customer} = \frac{1.326 \times 10^{13}}{2.6 \times 10^{4}}
\]

To divide the numbers in scientific notation, we divide the coefficients and subtract the exponents:

1. Divide the coefficients:
\[
\frac{1.326}{2.6} \approx 0.51076923077
\]

2. Subtract the exponents:
\[
10^{13} \div 10^{4} = 10^{13 - 4} = 10^{9}
\]

Now, combining the results:

\[
\text{Storage per customer} = 0.51076923077 \times 10^{9}
\]

Next, we need to express this in proper scientific notation. To convert a number into scientific notation, we want the coefficient to be between 1 and 10.

So, we can change \( 0.51076923077 \) to \( 5.1076923077 \times 10^{-1} \):

Now, we add the exponents:

\[
\text{Storage per customer} = (5.1076923077 \times 10^{-1}) \times 10^{9} = 5.1076923077 \times 10^{8}
\]

Finally, rounding to the appropriate decimal places:
\[
\text{Storage per customer} \approx 5.11 \times 10^{8}
\]

Thus, each customer can use approximately \( \boxed{5.11 \times 10^{8}} \) bytes of storage.

Related Questions