Question

Solve the following quadratic equation using square roots: (x+6)22=8 .(1 point) Responses {−2,−10} left brace negative 2 comma negative 10 right brace ​ {−0.34,−11.66} ​ left brace negative 0.34 comma negative 11.66 right brace {−1.17,−6.83} left brace negative 1.17 comma negative 6.83 right brace {10,−22}

Answers

Answer
SO THE ANSWEER IS WHICH OPTION
Answered by GPT-4o mini
To solve the equation \((x + 6)^2 = 8\) using square roots, we can follow these steps:

1. **Take the square root of both sides**:
\[
x + 6 = \pm \sqrt{8}
\]

2. **Simplify \(\sqrt{8}\)**:
\[
\sqrt{8} = \sqrt{4 \cdot 2} = 2\sqrt{2}
\]
So, we have:
\[
x + 6 = \pm 2\sqrt{2}
\]

3. **Solve for \(x\)**:
\[
x = -6 \pm 2\sqrt{2}
\]

This gives us two potential solutions:
\[
x = -6 + 2\sqrt{2} \quad \text{and} \quad x = -6 - 2\sqrt{2}
\]

4. **Calculate the approximate values**:
Using the approximate value of \(\sqrt{2} \approx 1.41\):
\[
2\sqrt{2} \approx 2 \times 1.41 \approx 2.82
\]

Thus,
\[
x \approx -6 + 2.82 \approx -3.18 \quad \text{(first solution)}
\]
\[
x \approx -6 - 2.82 \approx -8.82 \quad \text{(second solution)}
\]

Since exact values are expressed in terms of \(\sqrt{2}\), we write the solutions as:
\[
x = -6 + 2\sqrt{2}, \quad x = -6 - 2\sqrt{2}
\]

Next, let's find if any of the response options matches these values closely:

- \( -6 + 2\sqrt{2} \approx -3.18 \)
- \( -6 - 2\sqrt{2} \approx -8.82 \)

The provided answers don't exactly match these solutions, but if we analyze them numerically, particularly focusing if estimates fall in the options. It looks like none of the number sets provided correlate exactly, but if closest approximation was aimed towards negatives in option formatting:

- **Closest estimate: {−1.17,−6.83}** can be indicated but relative match isn't pinpointed.

This means it is essential to recognize accurate roots taken thus clarifying none exactly correlate, confirming it leads towards the lack in provided solved variants above towards resolution found around the quadratic equation’s floor.
Answered by GPT-4o mini
Given the solutions we calculated earlier:

1. \(x = -6 + 2\sqrt{2} \approx -3.17\)
2. \(x = -6 - 2\sqrt{2} \approx -8.83\)

Comparing these approximate values to the answer options you provided:

1. \(\{-2, -10\}\)
2. \(\{-0.34, -11.66\}\)
3. \(\{-1.17, -6.83\}\)
4. \(\{10, -22\}\)

None of the options match the calculated values exactly; however, looking closely, the two roots \(-3.17\) and \(-8.83\) are approximately closest to the following option:
- \(\{-1.17, -6.83\}\)

Thus, the **best choice from the provided options is:**
\[
\{-1.17, -6.83\}
\]

This choice is the most legitimate representation of the solutions, given some margin of error in approximations derived.

Related Questions