Question

an 8.0 liter oxygen tank has an internal gas pressure of 3.8x10^3 mmHg. Calculate the volume of the gas if it is released where the atmospheric pressure is 200 mmHg

Answers

GPT-4o mini
To calculate the volume of the gas when it is released to the atmospheric pressure, we can use Boyle's Law, which states that the pressure and volume of a gas are inversely related when the temperature is held constant. The formula is:

\[
P_1 V_1 = P_2 V_2
\]

Where:
- \(P_1\) is the initial pressure of the gas,
- \(V_1\) is the initial volume of the gas,
- \(P_2\) is the final pressure of the gas (atmospheric pressure),
- \(V_2\) is the final volume of the gas.

Given:
- \(P_1 = 3.8 \times 10^3 \text{ mmHg}\)
- \(V_1 = 8.0 \text{ L}\)
- \(P_2 = 200 \text{ mmHg}\)

We are asked to find \(V_2\).

Rearranging the formula for \(V_2\):

\[
V_2 = \frac{P_1 V_1}{P_2}
\]

Substituting the known values:

\[
V_2 = \frac{(3.8 \times 10^3 \text{ mmHg})(8.0 \text{ L})}{200 \text{ mmHg}}
\]

Now we calculate \(V_2\):

\[
V_2 = \frac{(3.8 \times 10^3)(8.0)}{200} = \frac{30400}{200} = 152 \text{ L}
\]

Thus, the volume of the gas when released at an atmospheric pressure of 200 mmHg is **152 liters**.

Related Questions