Question

Solve and determine the correct graph of the solution.

10x+4<8x−8
10
𝑥
+
4
<
8
𝑥

8

(1 point)
Responses

1 answer

To solve the inequality \(10x + 4 < 8x - 8\), follow these steps:

  1. Subtract \(8x\) from both sides: \[ 10x - 8x + 4 < -8 \] This simplifies to: \[ 2x + 4 < -8 \]

  2. Subtract 4 from both sides: \[ 2x < -8 - 4 \] This simplifies to: \[ 2x < -12 \]

  3. Divide both sides by 2: \[ x < -6 \]

So the solution to the inequality is: \[ x < -6 \]

Graphing the Solution:

To graph the solution \(x < -6\):

  • Draw a number line.
  • Locate the point at \(-6\).
  • Since \(x < -6\) does not include \(-6\) (indicated by a "<" symbol), use an open circle at \(-6\).
  • Shade the line to the left of \(-6\) to indicate all the numbers less than \(-6\).

This represents the solution. If there are specific options for graphs that you would like to compare, please provide those options for further assistance!