11. Change the equation from standard form to slope-intercept form by solving for y.

11x−8y=−48

Bob's work:

−8y=−59x

y=7.375

Bill's work:

−8y=−11x−48

y=118x+6

Bud's work:

−8y=−11x−48

y=−11x+6

Who solved for y correctly?

(1 point)
Responses

None of them are correct
None of them are correct

Bud
Bud

Bob
Bob

Bill

1 answer

Let's solve the equation \( 11x - 8y = -48 \) to determine who solved for \( y \) correctly.

Starting with the given equation:

  1. Isolate the term with \( y \): \[ -8y = -11x - 48 \]

  2. Divide every term by -8: \[ y = \frac{-11}{-8}x + \frac{-48}{-8} \]

  3. Simplify: \[ y = \frac{11}{8}x + 6 \]

Thus, the correct slope-intercept form of the equation is: \[ y = \frac{11}{8}x + 6 \]

Now let's evaluate each person's work:

  • Bob's work:

    • He had \( -8y = -59x \) which is incorrect.
  • Bill's work:

    • His result was \( y = 118x + 6 \), which is incorrect.
  • Bud's work:

    • He also had \( y = -11x + 6 \), which is incorrect.

Since all of them made mistakes in their calculations, the correct response is:

None of them are correct.