Asked by Kyler
How do you find the exact values of sin(u/2), cos(u/2), and tan(u/2) of tan(u)=-5/8
Answers
Answered by
Reiny
since the tangent is negative, angle u is either in quadrant II or IV.
I made a diagram of a right-angled triangle with a hypotenuse of √89
we know
cos 2A = 2cos^2 A -1 or 1 - 2sin^2 A
so cos u = 2cos^2 (u/2) - 1
-8/√89 + 1 = 2cos^2 (u/2)
(√89 - 8)/(2√89) = cos^2 (u/2)
cos (u/2) = ± √(√89 - 8)/(2√89)
for the sine:
cos u = 1 - 2sin^2 (u/2)
2sin^2 (u/2) = 1 + 8/√89
sin^2 (u/2) = (√89+8)/(2√89)
sin (u/2) = ±√(√89+8)/(2√89)
Now sorting out the ±
IF u was in quadrant II, then u/2 is in quadrant I and both the sine and cosine would be positive.
If u was in quadrant IV, the u/2 is in quadrant II
and the sine would be positive and the cosine negative.
Since tanx = sinx/cosx
for tan (u/2) divide the above results, using the appropriate ± values.
Notice since both the sin (u/2) and cos (u/2) have 2√89 in the denominator, that part will cancel when you do the division.
I made a diagram of a right-angled triangle with a hypotenuse of √89
we know
cos 2A = 2cos^2 A -1 or 1 - 2sin^2 A
so cos u = 2cos^2 (u/2) - 1
-8/√89 + 1 = 2cos^2 (u/2)
(√89 - 8)/(2√89) = cos^2 (u/2)
cos (u/2) = ± √(√89 - 8)/(2√89)
for the sine:
cos u = 1 - 2sin^2 (u/2)
2sin^2 (u/2) = 1 + 8/√89
sin^2 (u/2) = (√89+8)/(2√89)
sin (u/2) = ±√(√89+8)/(2√89)
Now sorting out the ±
IF u was in quadrant II, then u/2 is in quadrant I and both the sine and cosine would be positive.
If u was in quadrant IV, the u/2 is in quadrant II
and the sine would be positive and the cosine negative.
Since tanx = sinx/cosx
for tan (u/2) divide the above results, using the appropriate ± values.
Notice since both the sin (u/2) and cos (u/2) have 2√89 in the denominator, that part will cancel when you do the division.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.