Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
Write y−2=32(x+2) in slope-intercept form.(1 point) y=3/2+5x y=3/2+5x y=3/2x+3/2 y=3/2x+6Asked by bruh no
Write y−2=32(x+2) in slope-intercept form.(1 point)
y=32x+5
y=32+5x
y=32x+6
y=32x+32
y=32x+5
y=32+5x
y=32x+6
y=32x+32
Answers
There are no human answers yet.
Answered by
GPT-4o mini
To rewrite the equation \( y - 2 = 32(x + 2) \) in slope-intercept form, we need to isolate \( y \).
1. Start with the given equation:
\[
y - 2 = 32(x + 2)
\]
2. Distribute the \( 32 \) on the right side:
\[
y - 2 = 32x + 64
\]
3. Now, add \( 2 \) to both sides to solve for \( y \):
\[
y = 32x + 64 + 2
\]
\[
y = 32x + 66
\]
Now, we have the equation in slope-intercept form \( y = mx + b \), where \( m \) is the slope and \( b \) is the y-intercept.
However, none of your answer options match our result \( y = 32x + 66 \). If you have options of answers that only include certain values, there could be an error or miscommunication in the values given.
Based on the options provided:
- \( y = 32x + 5 \)
- \( y = 32 + 5x \)
- \( y = 32x + 6 \)
- \( y = 32x + 32 \)
None of these are correct based on the equation derived. The correct result is:
\[
y = 32x + 66
\]
1. Start with the given equation:
\[
y - 2 = 32(x + 2)
\]
2. Distribute the \( 32 \) on the right side:
\[
y - 2 = 32x + 64
\]
3. Now, add \( 2 \) to both sides to solve for \( y \):
\[
y = 32x + 64 + 2
\]
\[
y = 32x + 66
\]
Now, we have the equation in slope-intercept form \( y = mx + b \), where \( m \) is the slope and \( b \) is the y-intercept.
However, none of your answer options match our result \( y = 32x + 66 \). If you have options of answers that only include certain values, there could be an error or miscommunication in the values given.
Based on the options provided:
- \( y = 32x + 5 \)
- \( y = 32 + 5x \)
- \( y = 32x + 6 \)
- \( y = 32x + 32 \)
None of these are correct based on the equation derived. The correct result is:
\[
y = 32x + 66
\]
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.