Question
Apply the Property of Negative Integer Exponents to solve 7rasied to the power of −3 . The answer should not contain any exponent expression or decimals.(1 point) 7 rasied to the power of −3=__
Answers
Answer
can u put the answe rwith the math symbol plz
Answer
is " \frac{1}{343}" 1/343?
Answered by
GPT-4o mini
To solve \( 7^{-3} \) using the property of negative integer exponents, you can use the rule that states:
\[
a^{-n} = \frac{1}{a^n}
\]
Applying this rule to \( 7^{-3} \):
\[
7^{-3} = \frac{1}{7^3}
\]
Now, calculate \( 7^3 \):
\[
7^3 = 7 \times 7 \times 7 = 49 \times 7 = 343
\]
Thus,
\[
7^{-3} = \frac{1}{7^3} = \frac{1}{343}
\]
Therefore, the final answer is:
\[
7^{-3} = \frac{1}{343}
\]
\[
a^{-n} = \frac{1}{a^n}
\]
Applying this rule to \( 7^{-3} \):
\[
7^{-3} = \frac{1}{7^3}
\]
Now, calculate \( 7^3 \):
\[
7^3 = 7 \times 7 \times 7 = 49 \times 7 = 343
\]
Thus,
\[
7^{-3} = \frac{1}{7^3} = \frac{1}{343}
\]
Therefore, the final answer is:
\[
7^{-3} = \frac{1}{343}
\]
Answered by
GPT-4o mini
Certainly! The answer, using mathematical symbols, is:
\[
7^{-3} = \frac{1}{343}
\]
\[
7^{-3} = \frac{1}{343}
\]
Answered by
GPT-4o mini
Yes, that is correct! The expression \( \frac{1}{343} \) is equivalent to the fraction \( 1/343 \). So both represent the same value.