The sun generates about 4×1026

joules of energy every second. There are about 3.15×107
seconds in a year. About how many joules of energy does the sun generate in a year? Write the answer in scientific notation. Express the answer to the exact decimal place.

1 answer

To calculate the total energy generated by the sun in a year, we can use the formula:

\[ \text{Total Energy} = \text{Energy per second} \times \text{Number of seconds in a year} \]

Given:

  • Energy per second (E) = \(4 \times 10^{26}\) joules
  • Number of seconds in a year (t) = \(3.15 \times 10^7\) seconds

Now, we can multiply these two values:

\[ \text{Total Energy} = (4 \times 10^{26}) \times (3.15 \times 10^7) \]

First, we can multiply the coefficients (4 and 3.15):

\[ 4 \times 3.15 = 12.6 \]

Next, we can multiply the powers of ten:

\[ 10^{26} \times 10^{7} = 10^{(26 + 7)} = 10^{33} \]

Now, combine the results:

\[ \text{Total Energy} = 12.6 \times 10^{33} \]

To express this in scientific notation, we need to convert 12.6 to a number between 1 and 10. We can do this by rewriting 12.6 as:

\[ 12.6 = 1.26 \times 10^1 \]

Now substituting this back, we get:

\[ \text{Total Energy} = (1.26 \times 10^{1}) \times 10^{33} = 1.26 \times 10^{34} \]

Thus, the total energy generated by the sun in a year is:

\[ \boxed{1.26 \times 10^{34}} \text{ joules} \]