well, e^0 is 1
and e^.5 = 1.64
and e^1 is 2.72
so it is a sine wave with increasing amplitude as you approach 1 and frequency increasing with N
The integral of e^ax sin bx dx is
[e^ax/(a^2+b^2)] [a sin bx -b cos bx}here a = 1 and b = N
so
[e^x/(1+N^2)] [sin Nx - N cos Nx]
as N gets big
this looks like
e^x (-N cos Nx)/N^2
or
(-e^x/N)(cos Nx)
e^x is that small constant and cos Nx ranges between -1 and + 1 so as N gets big this goes to zero like 1/N
I have the function f(x)=e^x*sinNx on the interval [0,1] where N is a positive integer. What does it mean describe the graph of the function when N={whatever integer}? And what happens to the graph and to the value of the integral as N approaches infinity? Does the graph confirm the limiting behavior of the integral's value?
3 answers
Now how would you describe the graph of this function when say N=5, N=10, and N=100?
And what does it mean does the graph confirm the limiting behavior of the integral's value?
And what does it mean does the graph confirm the limiting behavior of the integral's value?
But how did you arrive at "as N gets big this looks like e^x(-NcosNx)/N^2?????