Asked by Paul
I have the function f(x)=e^x*sinNx on the interval [0,1] where N is a positive integer. What does it mean describe the graph of the function when N={whatever integer}? And what happens to the graph and to the value of the integral as N approaches infinity? Does the graph confirm the limiting behavior of the integral's value?
Answers
Answered by
Damon
well, e^0 is 1
and e^.5 = 1.64
and e^1 is 2.72
so it is a sine wave with increasing amplitude as you approach 1 and frequency increasing with N
The integral of e^ax sin bx dx is
[e^ax/(a^2+b^2)] [a sin bx -b cos bx}here a = 1 and b = N
so
[e^x/(1+N^2)] [sin Nx - N cos Nx]
as N gets big
this looks like
e^x (-N cos Nx)/N^2
or
(-e^x/N)(cos Nx)
e^x is that small constant and cos Nx ranges between -1 and + 1 so as N gets big this goes to zero like 1/N
and e^.5 = 1.64
and e^1 is 2.72
so it is a sine wave with increasing amplitude as you approach 1 and frequency increasing with N
The integral of e^ax sin bx dx is
[e^ax/(a^2+b^2)] [a sin bx -b cos bx}here a = 1 and b = N
so
[e^x/(1+N^2)] [sin Nx - N cos Nx]
as N gets big
this looks like
e^x (-N cos Nx)/N^2
or
(-e^x/N)(cos Nx)
e^x is that small constant and cos Nx ranges between -1 and + 1 so as N gets big this goes to zero like 1/N
Answered by
Paul
Now how would you describe the graph of this function when say N=5, N=10, and N=100?
And what does it mean does the graph confirm the limiting behavior of the integral's value?
And what does it mean does the graph confirm the limiting behavior of the integral's value?
Answered by
Paul
But how did you arrive at "as N gets big this looks like e^x(-NcosNx)/N^2?????
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.