Asked by bart
In a game of Incan basketball, A points are given for a free throw and B points are given for a field goal, where A and B are positive integers. If A=2 and B=5, then it is not possible for a team to score exactly 1 point. Nor is it possible to score exactly 3 points. Are there any other unattainable scores? How many unattainable scores are there if A=3 and B=5? Is it true for any choice of A and B that there are only finitely many unattainable scores? Suppose A and B are known, but it is known that neither A nor B is equal to 2 and that there are exactly 65 unattainable scores. Can you determine A and B? Explain.
Answers
There are no human answers yet.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.