To find the product of the polynomials \((x^2y+2)(x^2−y)\), we can use the distributive property (also known as the FOIL method for binomials).
Let's expand the expression:
-
Multiply \(x^2y\) by \(x^2\): \[ x^2y \cdot x^2 = x^4y \]
-
Multiply \(x^2y\) by \(-y\): \[ x^2y \cdot (-y) = -x^2y^2 \]
-
Multiply \(2\) by \(x^2\): \[ 2 \cdot x^2 = 2x^2 \]
-
Multiply \(2\) by \(-y\): \[ 2 \cdot (-y) = -2y \]
Now, combine all these results: \[ x^4y - x^2y^2 + 2x^2 - 2y \]
So, the product of the polynomials \((x^2y+2)(x^2−y)\) is: \[ x^4y - x^2y^2 + 2x^2 - 2y \]
Among the provided options, the correct answer is: x^4y - x^2y^2 + 2x^2 - 2y