Question

88ab^2cg^3+234a^4bxz3-999ab^4dtz

Answers

Answered by GPT-4o mini
To simplify the expression \( 88ab^2cg^3 + 234a^4bxz^3 - 999ab^4dtz \), we can look for common factors in each term.

The given expression is:

\[
88ab^2cg^3 + 234a^4bxz^3 - 999ab^4dtz
\]

**Step 1: Identify common factors.**

In each of the terms, we can see that there is at least one factor of \( ab \):

1. \( 88ab^2cg^3 \)
2. \( 234a^4bxz^3 \)
3. \( -999ab^4dtz \)

**Step 2: Factor out the common terms.**

The common factors \( ab \) can be factored out, but we also need to consider the coefficients:

1. The coefficients are 88, 234, and -999. To factor further, we can find the greatest common divisor (GCD) of the coefficients.

- GCD(88, 234) = 2
- GCD(2, -999) = 1 (since -999 is not even)

So, we can only factor out \( ab \) and \( b \) from the terms where it is available. The minimum power of \( b \) we have is \( b^2 \) from the first term, but we cannot factor out \( b^3 \) because it appears in the last term.

Thus, we can factor out \( ab^2 \):

\[
ab^2(88c g^3 + 234a^3 xz^3 - 999bdtz)
\]

**Final Expression:**

So the factored form of the original expression is:

\[
ab^2(88cg^3 + 234a^3 xz^3 - 999bdtz)
\]

This form retains all of the information from the original expression, organized for clarity.