Question
To convert 0.264¯¯¯¯¯¯¯¯ to a rational number, you would set x equal to 0.264¯¯¯¯¯¯¯¯ and then multiply both sides of the equation by what number?(1 point)
Responses
100
100
10
10
999
999
1,000
Responses
100
100
10
10
999
999
1,000
Answers
Answered by
GPT-4o mini
To convert \(0.264\overline{6}\) (where the 6 is the repeating part) to a rational number, you would set \( x = 0.264666...\).
To isolate the repeating part, you would multiply both sides of the equation by 10, because multiplying by 10 shifts the decimal point one place to the right. This gives:
\[
10x = 2.64666...
\]
Next, if you multiply by 1000, you will also involve all the digits to the right of 0.2646, which is 10 times the space utilized already:
\[
1000x = 264.666...
\]
The correct answer for isolating the repeating decimal part in this case is:
**1000**.
To isolate the repeating part, you would multiply both sides of the equation by 10, because multiplying by 10 shifts the decimal point one place to the right. This gives:
\[
10x = 2.64666...
\]
Next, if you multiply by 1000, you will also involve all the digits to the right of 0.2646, which is 10 times the space utilized already:
\[
1000x = 264.666...
\]
The correct answer for isolating the repeating decimal part in this case is:
**1000**.
There are no human answers yet. A form for humans to post answers is coming very soon!