Question
                △ABC has a perimeter of 37 units with the following side lengths: AB¯¯¯¯¯¯¯¯=10, CA¯¯¯¯¯¯¯¯=x+6, and BC¯¯¯¯¯¯¯¯=2x. Use the side lengths of △ABC to order its angle measures. Which of the following options orders the angles from least to greatest?(1 point)Responsesm∠A<m∠B<m∠Cm angle upper A less than m angle upper B less than m angle upper Cm∠B<m∠A<m∠Cm angle upper B less than m angle upper A less than m angle upper Cm∠C<m∠A<m∠Bm angle upper C less than m angle upper A less than m angle upper Bm∠C<m∠B<m∠A
            
            
        Answers
                                                    There are no human answers yet.
                                            
                
                    Answered by
            GPT-4o mini
            
    To solve this problem, we start by determining the side lengths of triangle \( ABC \) given the perimeter and the expressions for the side lengths.
The perimeter of triangle \( ABC \) is given as 37 units, and we have:
- \( AB = 10 \)
- \( CA = x + 6 \)
- \( BC = 2x \)
Using the perimeter formula:
\[
AB + CA + BC = 37
\]
Substituting the side lengths:
\[
10 + (x + 6) + (2x) = 37
\]
Combining like terms:
\[
10 + x + 6 + 2x = 37
\]
\[
3x + 16 = 37
\]
Now, we solve for \( x \):
\[
3x = 37 - 16
\]
\[
3x = 21
\]
\[
x = 7
\]
Next, we find the lengths of \( CA \) and \( BC \):
\[
CA = x + 6 = 7 + 6 = 13
\]
\[
BC = 2x = 2(7) = 14
\]
Now we have the side lengths:
- \( AB = 10 \)
- \( CA = 13 \)
- \( BC = 14 \)
To determine the order of the angle measures, we can use the relationships between the sides and angles in a triangle: the larger the side, the larger the opposite angle.
Given the side lengths:
- \( AB = 10 \) (opposite \( \angle C \))
- \( CA = 13 \) (opposite \( \angle B \))
- \( BC = 14 \) (opposite \( \angle A \))
We can order the sides from smallest to largest:
\[
AB < CA < BC \quad \text{(10 < 13 < 14)}
\]
Now we can determine the order of the angles:
- Since \( AB \) is the smallest side, \( \angle C \) is the smallest angle.
- Since \( CA \) is the middle side, \( \angle B \) is the middle angle.
- Since \( BC \) is the largest side, \( \angle A \) is the largest angle.
Thus, we have:
\[
m\angle C < m\angle B < m\angle A
\]
The correct order of the angles from least to greatest is:
\(\boxed{m\angle C < m\angle B < m\angle A}\)
This matches the response option:
**m∠C < m∠B < m∠A**.
    
The perimeter of triangle \( ABC \) is given as 37 units, and we have:
- \( AB = 10 \)
- \( CA = x + 6 \)
- \( BC = 2x \)
Using the perimeter formula:
\[
AB + CA + BC = 37
\]
Substituting the side lengths:
\[
10 + (x + 6) + (2x) = 37
\]
Combining like terms:
\[
10 + x + 6 + 2x = 37
\]
\[
3x + 16 = 37
\]
Now, we solve for \( x \):
\[
3x = 37 - 16
\]
\[
3x = 21
\]
\[
x = 7
\]
Next, we find the lengths of \( CA \) and \( BC \):
\[
CA = x + 6 = 7 + 6 = 13
\]
\[
BC = 2x = 2(7) = 14
\]
Now we have the side lengths:
- \( AB = 10 \)
- \( CA = 13 \)
- \( BC = 14 \)
To determine the order of the angle measures, we can use the relationships between the sides and angles in a triangle: the larger the side, the larger the opposite angle.
Given the side lengths:
- \( AB = 10 \) (opposite \( \angle C \))
- \( CA = 13 \) (opposite \( \angle B \))
- \( BC = 14 \) (opposite \( \angle A \))
We can order the sides from smallest to largest:
\[
AB < CA < BC \quad \text{(10 < 13 < 14)}
\]
Now we can determine the order of the angles:
- Since \( AB \) is the smallest side, \( \angle C \) is the smallest angle.
- Since \( CA \) is the middle side, \( \angle B \) is the middle angle.
- Since \( BC \) is the largest side, \( \angle A \) is the largest angle.
Thus, we have:
\[
m\angle C < m\angle B < m\angle A
\]
The correct order of the angles from least to greatest is:
\(\boxed{m\angle C < m\angle B < m\angle A}\)
This matches the response option:
**m∠C < m∠B < m∠A**.
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.