Asked by JOE
Hello,
Here is a question with something i've never heard of.
These are the first two stages of a fractal known as the Sierpinski carpet. The carpet begins with a square (stage 1). The square is cut into 9 congruent squares and the middle square is removed (stage 2).
Draw stage 3 using the method described to get from stage 1 to stage 2.
To the nearest whole percent, what percent of the original square remains in stage 3? Show your work and explain your answer.
Here is a question with something i've never heard of.
These are the first two stages of a fractal known as the Sierpinski carpet. The carpet begins with a square (stage 1). The square is cut into 9 congruent squares and the middle square is removed (stage 2).
Draw stage 3 using the method described to get from stage 1 to stage 2.
To the nearest whole percent, what percent of the original square remains in stage 3? Show your work and explain your answer.
Answers
Answered by
JOE
ok, I realize that I should cut each remaining square into 9 quadrants leaving the middle open of each of them.
Now, I just don't know how to get the percent of the original square that remains in stage 3.
Now, I just don't know how to get the percent of the original square that remains in stage 3.
Answered by
Damon
In stage one say the square is 9 units by 9 units thus 81 square units in area.
Then we cut it into 9 units each 3 units by three units so each 9 square units in area. We remove one so we only have 8 left each 9 square units in area.
Now for stage 3 we split each of those 8 squares into 9 squares each one unit by one unit or one unit square. We now divide one of those 1 by 1 squares into 9 squares each 1/3 by 1/3 so we can remove the middle one. The area left is 1 minus the middle which is 1/3*1/3 = 1/9 so it is 8/9
so we started with a square of 9 by 9 or 81 square units and now we have a little square with area of 8/9 square units so
(8/9)/81 is the ratio of area of one of the final little carpets to the original carpet.
Then we cut it into 9 units each 3 units by three units so each 9 square units in area. We remove one so we only have 8 left each 9 square units in area.
Now for stage 3 we split each of those 8 squares into 9 squares each one unit by one unit or one unit square. We now divide one of those 1 by 1 squares into 9 squares each 1/3 by 1/3 so we can remove the middle one. The area left is 1 minus the middle which is 1/3*1/3 = 1/9 so it is 8/9
so we started with a square of 9 by 9 or 81 square units and now we have a little square with area of 8/9 square units so
(8/9)/81 is the ratio of area of one of the final little carpets to the original carpet.
Answered by
Damon
Remember you have 8 of those little carpets.
Answered by
Damon
This might help, nice drawing of it.
(Broken Link Removed)
(Broken Link Removed)
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.