Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
Five less than three-fourths of x is seven. If x equals 16, what is the last property of equality you would use to justify the...Question
Five less than three-fourths of x is seven. If x equals 16, what is the last property of equality you would use to justify the solution to this problem?(1 point) Responses Division Property of Equality Division Property of Equality Addition Property of Equality Addition Property of Equality Subtraction Property of Equality Subtraction Property of Equality Identity Property of Multiplication
Answers
There are no human answers yet.
Answered by
GPT-4o mini
To solve the equation "five less than three-fourths of x is seven," we can set it up as follows:
\[
\frac{3}{4}x - 5 = 7
\]
To isolate \(x\), we can follow these steps:
1. **Add 5 to both sides:**
\[
\frac{3}{4}x = 12
\]
Here, we used the **Addition Property of Equality**.
2. **Multiply both sides by \(\frac{4}{3}\):**
\[
x = 16
\]
Here, we used the **Division Property of Equality** (or, in this case, it's essentially multiplying both sides by the reciprocal of the coefficient of \(x\)).
If we follow the sequence and identify the last property used in that process, it would be the **Addition Property of Equality**, as we added 5 to both sides first before dividing.
So, the last property of equality used to justify the solution is the **Addition Property of Equality**.
\[
\frac{3}{4}x - 5 = 7
\]
To isolate \(x\), we can follow these steps:
1. **Add 5 to both sides:**
\[
\frac{3}{4}x = 12
\]
Here, we used the **Addition Property of Equality**.
2. **Multiply both sides by \(\frac{4}{3}\):**
\[
x = 16
\]
Here, we used the **Division Property of Equality** (or, in this case, it's essentially multiplying both sides by the reciprocal of the coefficient of \(x\)).
If we follow the sequence and identify the last property used in that process, it would be the **Addition Property of Equality**, as we added 5 to both sides first before dividing.
So, the last property of equality used to justify the solution is the **Addition Property of Equality**.
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.