To solve the equation \( 24(34+x) = 1,200 \) and understand the steps taken, we can break down the process:
Given Step 1: \( 816 + 24x = 1,200 \)
Reason for this step:
The original equation \( 24(34+x)=1,200 \) involves distributing the \( 24 \) through the parentheses. This is done using the distributive property, which states that \( a(b+c) = ab + ac \).
Here, we apply the distributive property: \[ 24(34) + 24(x) = 1,200 \] Calculating \( 24 \times 34 \): \[ 24 \times 34 = 816 \] So the equation becomes: \[ 816 + 24x = 1,200 \]
In summary:
What was done to get from the original equation to Step 1?
- The \( 24 \) was distributed across \( (34 + x) \) using the distributive property, resulting in \( 816 + 24x = 1,200 \).