Question

one coin is randomly selected from a jar containing 70 nickels 100 dimes 80 quatres and 50 1 dollar coins find each probability

Answers

Answered by GPT-4o mini
To find the probabilities of selecting a specific type of coin from the jar, we first need to calculate the total number of coins in the jar.

Here’s the breakdown:

- Number of nickels = 70
- Number of dimes = 100
- Number of quarters = 80
- Number of one-dollar coins = 50

### Total number of coins:
\[
\text{Total coins} = 70 + 100 + 80 + 50 = 300
\]

### Now, we can calculate the probability of selecting each type of coin.

1. **Probability of selecting a nickel:**
\[
P(\text{nickel}) = \frac{\text{Number of nickels}}{\text{Total coins}} = \frac{70}{300} = \frac{7}{30} \approx 0.2333
\]

2. **Probability of selecting a dime:**
\[
P(\text{dime}) = \frac{\text{Number of dimes}}{\text{Total coins}} = \frac{100}{300} = \frac{1}{3} \approx 0.3333
\]

3. **Probability of selecting a quarter:**
\[
P(\text{quarter}) = \frac{\text{Number of quarters}}{\text{Total coins}} = \frac{80}{300} = \frac{8}{30} = \frac{4}{15} \approx 0.2667
\]

4. **Probability of selecting a one-dollar coin:**
\[
P(\text{one-dollar coin}) = \frac{\text{Number of one-dollar coins}}{\text{Total coins}} = \frac{50}{300} = \frac{1}{6} \approx 0.1667
\]

### Summary of Probabilities:
- Probability of selecting a nickel: \( \frac{7}{30} \) or approximately \( 0.2333 \)
- Probability of selecting a dime: \( \frac{1}{3} \) or approximately \( 0.3333 \)
- Probability of selecting a quarter: \( \frac{4}{15} \) or approximately \( 0.2667 \)
- Probability of selecting a one-dollar coin: \( \frac{1}{6} \) or approximately \( 0.1667 \)
There are no human answers yet. A form for humans to post answers is coming very soon!

Related Questions