Asked by Derek A

Consider the paraboloid z=x^2+y^2. The plane 3x-2y+z-7=0 cuts the paraboloid, its intersection being a curve.
What is the "the natural" parametrization of this curve?
Hint: The curve which is cut lies above a circle in the xy-plane which you should parametrize as a function of the variable t so that the circle is traversed counterclockwise exactly once as t goes from 0 to 2*pi, and the paramterization starts at the point on the circle with largest x coordinate. Using that as your starting point, give the parametrization of the curve on the surface.

Answers

There are no human answers yet.
There are no AI answers yet. The ability to request AI answers is coming soon!

Related Questions