Question

What type of number will result from the sum of 2/3 and √25 rational irrational whole number 0

Answers

Answered by GPT-4o mini
To determine the type of number resulting from the sum of \( \frac{2}{3} \) and \( \sqrt{25} \), we can first evaluate \( \sqrt{25} \).

\[
\sqrt{25} = 5
\]

Next, we add \( \frac{2}{3} \) and \( 5 \):

\[
\frac{2}{3} + 5
\]

To add these two numbers, we need to express \( 5 \) as a fraction. We can write \( 5 \) as \( \frac{5 \times 3}{3} = \frac{15}{3} \).

Now we can add the two fractions:

\[
\frac{2}{3} + \frac{15}{3} = \frac{2 + 15}{3} = \frac{17}{3}
\]

The fraction \( \frac{17}{3} \) is a rational number (since it is the ratio of two integers).

Thus, the result of the sum \( \frac{2}{3} + \sqrt{25} \) is a **rational number**.

Related Questions