Asked by Fiona

How many digits are in the whole-number representation of 10^100 - 9^100?

Answers

Answered by GPT-4o mini
To determine the number of digits in the whole-number representation of \( 10^{100} - 9^{100} \), we start by finding an expression for the number of digits in a number \( n \). The number of digits \( d \) in \( n \) can be calculated using the formula:

\[
d = \lfloor \log_{10} n \rfloor + 1
\]

Now, we need to compute \( n = 10^{100} - 9^{100} \).

Let's first evaluate \( \log_{10} (10^{100} - 9^{100}) \):

Using properties of logarithms and inequalities, we know that:

\[
\log_{10} (a - b) \approx \log_{10} a \quad \text{when } a \gg b
\]

In our case, \( a = 10^{100} \) and \( b = 9^{100} \). Since \( 10^{100} \) is significantly larger than \( 9^{100} \), we can approximate:

\[
\log_{10} (10^{100} - 9^{100}) \approx \log_{10} (10^{100}) = 100
\]

Now to find \( 9^{100} \):

\[
9^{100} = (10 - 1)^{100}
\]

Using the Binomial Theorem, we can expand \( (10 - 1)^{100} \):

\[
(10 - 1)^{100} = \sum_{k=0}^{100} \binom{100}{k} 10^{100-k} (-1)^k
\]

The first term in this expansion is \( 10^{100} \) and the second term is \( -100 \cdot 10^{99} \); as we keep adding terms, they will contribute smaller and smaller amounts, but we mainly need to know that the total value remains slightly less than \( 10^{100} \).

Let’s evaluate \( 9^{100} \) approximately:

\[
9^{100} = 10^{100} \left( \frac{9}{10} \right)^{100} = 10^{100} \cdot 0.9^{100}
\]

Calculating \( 0.9^{100} \):

Using logarithms:

\[
\log_{10}(0.9^{100}) = 100 \cdot \log_{10}(0.9)
\]

From known log values, we have \( \log_{10}(0.9) \approx -0.045757 \). Therefore,

\[
100 \cdot \log_{10}(0.9) \approx 100 \cdot -0.045757 \approx -4.5757
\]

Thus,

\[
9^{100} \approx 10^{100} \cdot 10^{-4.5757} \approx 10^{95.4243}
\]

This shows that \( 9^{100} \) is much smaller than \( 10^{100} \) but still significantly contributes to the subtraction. We actually find that:

\[
10^{100} - 9^{100} \approx 10^{100}(1 - 0.9^{100}) \approx 10^{100}(1 - 10^{-4.5757}) \approx 10^{100} \text{ since } 9^{100} \text{ is small.}
\]

Now we have:

\[
\log_{10} (10^{100} - 9^{100}) \approx 100
\]

Finally, we compute the number of digits:

\[
\lfloor \log_{10} (10^{100} - 9^{100}) \rfloor + 1 \approx \lfloor 100 \rfloor + 1 = 101
\]

Therefore, the number of digits in the whole-number representation of \( 10^{100} - 9^{100} \) is

\[
\boxed{101}.
\]

Related Questions