A poll shows that 76% of voters favor an initiative. If 7 voters are selected at random, what is the probability that exactly 4 of them will vote in favor?(1 point) Responses About 3.87% About 3.87% About 16.1% About 16.1% About 76% About 76% About 35%

1 answer

About 35%

To calculate the probability that exactly 4 out of 7 voters will vote in favor, we can use the binomial probability formula:

P(X = k) = (n choose k) * p^k * (1-p)^(n-k)

where:
- n is the total number of trials (7 voters)
- k is the number of successful trials (4 voters in favor)
- p is the probability of success on each trial (76% or 0.76)

Plugging in the values, we get:

P(X = 4) = (7 choose 4) * 0.76^4 * (1-0.76)^(7-4)
P(X = 4) = (35) * 0.76^4 * 0.24^3
P(X = 4) ≈ 0.3509

Therefore, the probability that exactly 4 out of 7 voters will vote in favor is about 35%.