Find the vertex of the function

f(x) = 3x^2 - 6x + 4

1 answer

To find the vertex of the function, we can use the formula for the x-coordinate of the vertex of a parabola in the form of y = ax^2 + bx + c:

x = -b / 2a

In this case, a = 3 and b = -6.

Plugging these values into the formula, we get:

x = -(-6) / 2(3)
x = 6 / 6
x = 1

Now that we have the x-coordinate of the vertex, we can find the y-coordinate by plugging x = 1 back into the original function:

f(1) = 3(1)^2 - 6(1) + 4
f(1) = 3 - 6 + 4
f(1) = 1

Therefore, the vertex of the function f(x) = 3x^2 - 6x + 4 is (1, 1).
Similar Questions
  1. What is the new vertex of the function after the transformation?(4 points) Write your answer as an ordered pair. #1 Find the
    1. answers icon 1 answer
  2. What is the new vertex of the function after the transformation?(4 points) Write your answer as an ordered pair. #1 Find the
    1. answers icon 1 answer
  3. For the function f(x)=4x²+16x-12A) What are the zeros? B) what is the vertex? C) write in vertex form D) state the domain and
    1. answers icon 1 answer
  4. For the function f(x)=4x²+16x-12A) What are the zeros? B) what is the vertex? C) write in vertex form D) state the domain and
    1. answers icon 1 answer
more similar questions