Asked by amelia
I'm not sure how to do this question
7. The growth of bacteria in culture can be described by the equation
N1 = N0e'
where N is the number of bactena at any time t, No is the initial number of bacteria, and k
is a constant. The time taken for growth to double the number of bacteria of a particular
strain (the 'doubling time') was 30 mm. A culture was started with 200 bacteria of this
strain
Determine the followmg (giving appropnate units in each case)
(a) the value of k for this strain (2]
(b) the rate of increase m bacterial number when the number in the colony
was 2000 131
(c) the minimum number of bacteria in this culture (1]
for a i calculated k =0.023 or (ln 2)/30
for c i think it would be at t = 0
Nt = No.e^(k0)
Nt = No.e^0
Nt = No.1
Nt = No = 200
i don't know how to do b and im not sure if im right with a and c please help
7. The growth of bacteria in culture can be described by the equation
N1 = N0e'
where N is the number of bactena at any time t, No is the initial number of bacteria, and k
is a constant. The time taken for growth to double the number of bacteria of a particular
strain (the 'doubling time') was 30 mm. A culture was started with 200 bacteria of this
strain
Determine the followmg (giving appropnate units in each case)
(a) the value of k for this strain (2]
(b) the rate of increase m bacterial number when the number in the colony
was 2000 131
(c) the minimum number of bacteria in this culture (1]
for a i calculated k =0.023 or (ln 2)/30
for c i think it would be at t = 0
Nt = No.e^(k0)
Nt = No.e^0
Nt = No.1
Nt = No = 200
i don't know how to do b and im not sure if im right with a and c please help
Answers
Answered by
drwls
I cannot follow what you are doing. Your original equation
N1 = N0e'
is wrong, and you quote a doubling time im millimeters.
To obtain help, you need to be more careful posting your questions.
N1 = N0e'
is wrong, and you quote a doubling time im millimeters.
To obtain help, you need to be more careful posting your questions.
Answered by
Reiny
First of all your opening equation should have been
N1 = N0 e^(kt), where t is in minutes.
Does 30 mm mean "30 minutes" ? (I assumed that)
I did get the same value of k.
so your equation is
N = 200 e^(.023105t)
the rate of increase is the derivative of your function, so
dN/dt = 200(.023105) e^(.023105t)
So we now have to find the value of t when N = 2000131
2000131 = 200 e^(.023105t)
for that I got t = 398.6 minutes
(you better check my arithmetic here)
Now sub that t value back into our derivative to find the rate of change at that time.
c) is a strange question. Since it is exponential growth, the minimum value would be at the start, namely 200
N1 = N0 e^(kt), where t is in minutes.
Does 30 mm mean "30 minutes" ? (I assumed that)
I did get the same value of k.
so your equation is
N = 200 e^(.023105t)
the rate of increase is the derivative of your function, so
dN/dt = 200(.023105) e^(.023105t)
So we now have to find the value of t when N = 2000131
2000131 = 200 e^(.023105t)
for that I got t = 398.6 minutes
(you better check my arithmetic here)
Now sub that t value back into our derivative to find the rate of change at that time.
c) is a strange question. Since it is exponential growth, the minimum value would be at the start, namely 200
Answered by
amelia
sorry it was a copy and paste job should checked it thanks for the help
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.