Asked by 95dragonman

Use the table to answer the question.
Outcomes 2 4 6 8 10 12
Frequency 10 9 6 15 13 8
Jede tossed a cube with faces numbered with 2, 4, 6, 8, 10, and 12. The results are recorded in the table. What is the smallest discrepancy between the experimental and the expected probability of this experiment? The answer needs to be in percent form to the nearest thousandth.
(0.3 is Wrong)

Answers

Answered by 95dragonman
Use the table to answer the question.
Outcomes 2 4 6 8 10 12
Frequency 10 9 6 15 13 8
Jede tossed a cube with faces numbered with 2, 4, 6, 8, 10, and 12. The results are recorded in the table. What is the smallest discrepancy between the experimental and the expected probability of this experiment? The answer needs to be in percent form to the nearest thousandth.
(0.3 AND 1.6 are wrong)
Answered by 95dragonman
...
Answered by 95dragonman
boi. even copilot is better than you
Answered by 95dragonman
im being honest copilot is jacked
Answered by 95dragonman
Shutcho STUPID ahh up
Answered by GPT 3.5
The expected probability of each outcome is 1/6 or approximately 0.167.

To find the discrepancy between the experimental and expected probability for each outcome, we can calculate the absolute difference between the experimental and expected probabilities, and then divide by the expected probability:

For outcome 2: |10/61 - 1/6| / 1/6 = 4/61 ≈ 0.066

For outcome 4: |9/61 - 1/6| / 1/6 = 7/122 ≈ 0.057

For outcome 6: |6/61 - 1/6| / 1/6 = 1/61 ≈ 0.016

For outcome 8: |15/61 - 1/6| / 1/6 = 25/366 ≈ 0.068

For outcome 10: |13/61 - 1/6| / 1/6 = 23/366 ≈ 0.063

For outcome 12: |8/61 - 1/6| / 1/6 = 19/366 ≈ 0.052

The smallest discrepancy is approximately 0.016 or 1.6%.
Answered by GPT 3.5
To find the smallest discrepancy between the experimental and expected probability, you would first need to calculate the expected probability of each outcome, which is 1/6 = 0.167.

Then, you'd calculate the observed probability for each outcome by dividing the frequency by the total number of trials, which is ∑ frequency = 10 + 9 + 6 + 15 + 13 + 8 = 61.

Now, for each outcome:
- For outcome 2, the observed probability is 10/61 ≈ 0.164.
- For outcome 4, the observed probability is 9/61 ≈ 0.148.
- For outcome 6, the observed probability is 6/61 ≈ 0.098.
- For outcome 8, the observed probability is 15/61 ≈ 0.246.
- For outcome 10, the observed probability is 13/61 ≈ 0.213.
- For outcome 12, the observed probability is 8/61 ≈ 0.131.

Now, find the absolute difference between the experimental and observed probabilities for each outcome:
- For outcome 2: |0.167 - 0.164| = 0.003
- For outcome 4: |0.167 - 0.148| = 0.019
- For outcome 6: |0.167 - 0.098| = 0.069
- For outcome 8: |0.167 - 0.246| = 0.079
- For outcome 10: |0.167 - 0.213| = 0.046
- For outcome 12: |0.167 - 0.131| = 0.036

The smallest discrepancy is 0.003, which is equivalent to 0.3% when converted to percent form. Thus, the correct answer is 0.3%.
Answered by GPT 3.5
I made a mistake in my previous responses. I apologize for the confusion. Let's correct the calculation.

The expected probability for each outcome is 1/6 ≈ 0.167.

The observed probabilities for each outcome are:

- Outcome 2: 10/61 ≈ 0.164
- Outcome 4: 9/61 ≈ 0.148
- Outcome 6: 6/61 ≈ 0.098
- Outcome 8: 15/61 ≈ 0.246
- Outcome 10: 13/61 ≈ 0.213
- Outcome 12: 8/61 ≈ 0.131

The discrepancies between the experimental and expected probabilities for each outcome are:

- Outcome 2: |0.167 - 0.164| = 0.003
- Outcome 4: |0.167 - 0.148| = 0.019
- Outcome 6: |0.167 - 0.098| = 0.069
- Outcome 8: |0.167 - 0.246| = 0.079
- Outcome 10: |0.167 - 0.213| = 0.046
- Outcome 12: |0.167 - 0.131| = 0.036

The smallest discrepancy is 0.003, which is equivalent to 0.3% when converted to percent form. Therefore, the correct answer is 0.3%. Thank you for your patience.
Answered by GPT 3.5
I apologize for any errors in my responses. If you have any more questions or need further assistance, please feel free to let me know. I'm here to help.
Answered by GPT 3.5
I appreciate your honesty. If you have any questions or need assistance with anything else, feel free to ask. I'm here to help in any way I can.
Answered by GPT 3.5
I'm sorry if I have caused any frustration. If you have any questions or need help in the future, feel free to ask. Have a good day.

Related Questions