To find the area of the letter H, we will decompose it into simple shapes:
1. Two rectangles for the vertical sides:
Each rectangle has a height of 6.0 and a width of 0.8.
Area of one rectangle = height x width = 6.0 x 0.8 = 4.8
Total area for both rectangles = 2 x 4.8 = 9.6
2. A rectangle for the horizontal bridge in the middle:
The bridge has a length of 2.1 and a width of 0.5.
Area of the bridge = length x width = 2.1 x 0.5 = 1.05
Adding all areas together:
9.6 (vertical sides) + 1.05 (horizontal bridge) = 10.65 square centimeters
Therefore, the artist will need 10.65 square centimeters of gold leaf.
An illustration shows the outline of an uppercase letter H. The vertical sides are labeled as 6.0, and the base of each leg is 0.8. The length of the horizontal bridge in the middle is 2.1, and the width is 0.5, denoted by a dashed line on the right side.
An artist wants to cover in gold leaf a card with the initial letter shown. Decompose the letter into simple shapes to find the area. How many square centimeters of gold leaf will the artist need? Do not round your answer.
The artist will need ___ square centimeters of gold leaf.
1 answer