Which whole numbers less than 10 are solutions of 4x - 8 ≤ 47 (1 point)

1 answer

To find the whole numbers less than 10 that satisfy the inequality 4x - 8 ≤ 47, we can simply substitute each whole number less than 10 into the equation and see if it satisfies the inequality.

1. For x = 0:
4(0) - 8 ≤ 47
-8 ≤ 47
This is true.

2. For x = 1:
4(1) - 8 ≤ 47
4 - 8 ≤ 47
-4 ≤ 47
This is true.

3. For x = 2:
4(2) - 8 ≤ 47
8 - 8 ≤ 47
0 ≤ 47
This is true.

4. For x = 3:
4(3) - 8 ≤ 47
12 - 8 ≤ 47
4 ≤ 47
This is true.

5. For x = 4:
4(4) - 8 ≤ 47
16 - 8 ≤ 47
8 ≤ 47
This is true.

6. For x = 5:
4(5) - 8 ≤ 47
20 - 8 ≤ 47
12 ≤ 47
This is true.

7. For x = 6:
4(6) - 8 ≤ 47
24 - 8 ≤ 47
16 ≤ 47
This is true.

8. For x = 7:
4(7) - 8 ≤ 47
28 - 8 ≤ 47
20 ≤ 47
This is true.

9. For x = 8:
4(8) - 8 ≤ 47
32 - 8 ≤ 47
24 ≤ 47
This is true.

So, the whole numbers less than 10 that satisfy the inequality 4x - 8 ≤ 47 are 0, 1, 2, 3, 4, 5, 6, 7, 8.
Similar Questions
  1. How many solutions are there to the inequality x<4?(1 point) Responses A. 3 numbers B. only even numbers C. an infinite amount
    1. answers icon 1 answer
  2. How many solutions are there to the inequality x<4 ?(1 point)Responses 3 numbers only even numbers an infinite amount only odd
    1. answers icon 1 answer
  3. An inequality is shown.b>2 Which statement is true? The solutions to the inequality are all numbers less than 2 . The solutions
    1. answers icon 1 answer
  4. How many solutions are there to the inequality x<4?(1 point) Responses 3 numbers 3 numbers only even numbers only even numbers
    1. answers icon 1 answer
more similar questions