Asked by Louis
Akite is 15m up in the sky. The angle the string makes with the ground is 50 degrees. How long is the kite string?
Answers
Answered by
Michael
A picture would help with this one...
It's going to be a right triangle. The height is going to be 15m. The lower angle is 50 degrees. We're trying to find the hypotenuse, so assign that a variable like x. You can use the sine function, which I'm sure you learned in class for this. Sine is opposite over hypotenuse.
sin 50 = 15/x
Solve that equation for your answer.
It's going to be a right triangle. The height is going to be 15m. The lower angle is 50 degrees. We're trying to find the hypotenuse, so assign that a variable like x. You can use the sine function, which I'm sure you learned in class for this. Sine is opposite over hypotenuse.
sin 50 = 15/x
Solve that equation for your answer.
Answered by
Marty
You have to use SINE.
If you draw a diagram you know that we are looking for the hypotenuse.
Therefore sin50=15/x
0.766=15/x
0.766x=15 (divide by 0.766 to isolate x)
x=19.58
so the kite string is 19.58m long
If you draw a diagram you know that we are looking for the hypotenuse.
Therefore sin50=15/x
0.766=15/x
0.766x=15 (divide by 0.766 to isolate x)
x=19.58
so the kite string is 19.58m long
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.