The solution of the inequality 5j ≥ 15 is j ≥ 3.
To solve this inequality, we divide by 5 on both sides:
5j/5 ≥ 15/5
j ≥ 3
Therefore, the solution of the inequality is j ≥ 3.
What is the solution of the inequality 5j≥15 ?
7 answers
Question Solve the inequality 6g<3 .
To solve the inequality 6g < 3, we need to isolate the variable g.
Divide both sides by 6:
6g/6 < 3/6
g < 0.5
Therefore, the solution to the inequality 6g < 3 is g < 0.5.
Divide both sides by 6:
6g/6 < 3/6
g < 0.5
Therefore, the solution to the inequality 6g < 3 is g < 0.5.
You want to have enough flour to divide into 5 piles. Each pile must measure more than 1.5 cups. The inequality you write is f5>1.5 . Solve the inequality
To solve the inequality f/5 > 1.5, we need to isolate the variable f.
Multiply both sides by 5 to get rid of the denominator:
f/5 * 5 > 1.5 * 5
f > 7.5
Therefore, the solution to the inequality f > 7.5 is that you need to have more than 7.5 cups of flour to divide into 5 piles, each measuring more than 1.5 cups.
Multiply both sides by 5 to get rid of the denominator:
f/5 * 5 > 1.5 * 5
f > 7.5
Therefore, the solution to the inequality f > 7.5 is that you need to have more than 7.5 cups of flour to divide into 5 piles, each measuring more than 1.5 cups.
Question The members of a bridge club are divided into tables of 4 to play bridge. There are 19 bridge tables at the club. What inequality expresses how many people can come to play on a given night?
To express the total number of people who can play on a given night, you would calculate the total number of people based on the number of tables and the number of people per table.
Since each table has 4 people, the total number of people who can play is given by:
Total number of people = Number of tables * Number of people per table
Total number of people = 19 tables * 4 people
Total number of people = 76 people
Therefore, the inequality that expresses how many people can come to play on a given night is:
p ≤ 76
Where p represents the number of people attending the bridge club on a given night. The total number of people should be less than or equal to 76.
Since each table has 4 people, the total number of people who can play is given by:
Total number of people = Number of tables * Number of people per table
Total number of people = 19 tables * 4 people
Total number of people = 76 people
Therefore, the inequality that expresses how many people can come to play on a given night is:
p ≤ 76
Where p represents the number of people attending the bridge club on a given night. The total number of people should be less than or equal to 76.