The composite figure has sides measuring 1 mi, 6 mi, 7 mi, 1 mi, 1 mi, and 3 mi. What is the area?

1 answer

To find the area of the composite figure, we can break it down into smaller shapes.

The composite figure can be divided into a triangle with sides 1 mi, 6 mi, and 7 mi, a quadrilateral with sides 1 mi, 1 mi, 1 mi, and 3 mi, and a triangle with sides 3 mi, 6 mi, and 7 mi.

First, find the area of the triangle with sides 1 mi, 6 mi, and 7 mi using Heron's formula:

s = (1 + 6 + 7) / 2 = 7

Area = √[7(7-1)(7-6)(7-7)] = √[7(6)(1)(0)] = 0 square miles

Next, find the area of the quadrilateral with sides 1 mi, 1 mi, 1 mi, and 3 mi. Since the quadrilateral is a square, we can find the area by squaring any of the side lengths:

Area = (1)^2 = 1 square mile

Finally, find the area of the triangle with sides 3 mi, 6 mi, and 7 mi using Heron's formula:

s = (3 + 6 + 7) / 2 = 8

Area = √[8(8-3)(8-6)(8-7)] = √[8(5)(2)(1)] = √[80] ≈ 8.94 square miles

Add up the areas of the individual shapes to find the total area of the composite figure:

0 + 1 + 8.94 = 9.94 square miles

Therefore, the area of the given composite figure is approximately 9.94 square miles.
Similar Questions
  1. The figure shows three quadrilaterals on a coordinate grid:A coordinate plane is shown. Figure Q is a quadrilateral with sides
    1. answers icon 3 answers
  2. The figure shows three quadrilaterals on a coordinate grid:A coordinate plane is shown. Figure Q is a quadrilateral with sides
    1. answers icon 1 answer
  3. Use the image to answer the question.A composite figure made up of two rectangles has all of its sides labeled. If this
    1. answers icon 1 answer
    1. answers icon 1 answer
more similar questions