Asked by Deanna

OKay My question is:
Two factories manufacture 3 different grades per paper. the company that owns the factories has contracts to supply at least 16 tons of low grade, 5 tons of medium grade, and at least 20 tons of high grade paper. It cost $1000 per day to operate the first factory and 2000 per day to operate the second. Factory 1 produces 8 tons of low grade, 1 ton of medium grade, and 2 tons of high grade paper in day's operation. Factory 2 produces 2 tons of low grade, 1 ton of medium grade and 7 tons of high grade per day. how many days should each factory be in operation in order to fill the most economically?

Also i have to assign variables to x and y and state a goal plus represent the goal with an equation
then i have to write inequalities that represent the restrictions of this problem in a chart. Then i have to grade the system of inequalities, shade the solution region, and use corner points to analyze data and find the solution. Finally I write my solution in a complete sentence.
Help?

Answers

Answered by MathMate
So the instructions seem to be clear. Do you have a problem, or where is the problem if there is any?
Answered by Deanna
It's just I'm stuck at picking out what i need and such.. Not very good with word problems..
Answered by MathMate
You can take the question and split it up into constraints and costs.

Requirements:
"supply at least 16 tons of low grade, 5 tons of medium grade, and at least 20 tons of high grade paper."
So minimum quantities = (16,5,20)
Supplied by Factory 1, F1 = (8,1,2)/$1000
Supplied by F2 = (2,1,7)/$2000

So the constraints are:
8F1+2F2 ≥ 16
F1+F2 ≥ 5
2F1+7F2 ≥ 20
F1 ≥ 0
F2 ≥ 0

Cost=1000F1+2000F2

Your graph will have F1 in the x-axis, F2 in the y-axis. Plot the constraint equations, and shade the solution (feasible) region. Find the optimal solution.

There are no AI answers yet. The ability to request AI answers is coming soon!

Related Questions