Asked by Deanna
                OKay My question is:
Two factories manufacture 3 different grades per paper. the company that owns the factories has contracts to supply at least 16 tons of low grade, 5 tons of medium grade, and at least 20 tons of high grade paper. It cost $1000 per day to operate the first factory and 2000 per day to operate the second. Factory 1 produces 8 tons of low grade, 1 ton of medium grade, and 2 tons of high grade paper in day's operation. Factory 2 produces 2 tons of low grade, 1 ton of medium grade and 7 tons of high grade per day. how many days should each factory be in operation in order to fill the most economically?
Also i have to assign variables to x and y and state a goal plus represent the goal with an equation
then i have to write inequalities that represent the restrictions of this problem in a chart. Then i have to grade the system of inequalities, shade the solution region, and use corner points to analyze data and find the solution. Finally I write my solution in a complete sentence.
Help?
            
        Two factories manufacture 3 different grades per paper. the company that owns the factories has contracts to supply at least 16 tons of low grade, 5 tons of medium grade, and at least 20 tons of high grade paper. It cost $1000 per day to operate the first factory and 2000 per day to operate the second. Factory 1 produces 8 tons of low grade, 1 ton of medium grade, and 2 tons of high grade paper in day's operation. Factory 2 produces 2 tons of low grade, 1 ton of medium grade and 7 tons of high grade per day. how many days should each factory be in operation in order to fill the most economically?
Also i have to assign variables to x and y and state a goal plus represent the goal with an equation
then i have to write inequalities that represent the restrictions of this problem in a chart. Then i have to grade the system of inequalities, shade the solution region, and use corner points to analyze data and find the solution. Finally I write my solution in a complete sentence.
Help?
Answers
                    Answered by
            MathMate
            
    So the instructions seem to be clear.  Do you have a problem, or where is the problem if there is any?
    
                    Answered by
            Deanna
            
    It's just I'm stuck at picking out what i need and such.. Not very good with word problems..
    
                    Answered by
            MathMate
            
    You can take the question and split it up into constraints and costs.
Requirements:
"supply at least 16 tons of low grade, 5 tons of medium grade, and at least 20 tons of high grade paper."
So minimum quantities = (16,5,20)
Supplied by Factory 1, F1 = (8,1,2)/$1000
Supplied by F2 = (2,1,7)/$2000
So the constraints are:
8F1+2F2 ≥ 16
F1+F2 ≥ 5
2F1+7F2 ≥ 20
F1 ≥ 0
F2 ≥ 0
Cost=1000F1+2000F2
Your graph will have F1 in the x-axis, F2 in the y-axis. Plot the constraint equations, and shade the solution (feasible) region. Find the optimal solution.
    
Requirements:
"supply at least 16 tons of low grade, 5 tons of medium grade, and at least 20 tons of high grade paper."
So minimum quantities = (16,5,20)
Supplied by Factory 1, F1 = (8,1,2)/$1000
Supplied by F2 = (2,1,7)/$2000
So the constraints are:
8F1+2F2 ≥ 16
F1+F2 ≥ 5
2F1+7F2 ≥ 20
F1 ≥ 0
F2 ≥ 0
Cost=1000F1+2000F2
Your graph will have F1 in the x-axis, F2 in the y-axis. Plot the constraint equations, and shade the solution (feasible) region. Find the optimal solution.
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.