Asked by Melody
I have another question I am stuck on that follows a previous question. How do I get an equation for the height of the car on the ferris wheel over a 10 minute period if we start the analysis one minute into the ride.
Can I still use the original formula
h = -35cos(2pi*X/5)+37
I don't understand what part changes to make it one minute into the ride. Appreciate any help, orignal question below.
have a trig question regarding a ferris wheel, radius 35m, axles 37m, clockwise direction, rotates twice every 10 mins. I have calculated the following function:
h = -35cos(2pi*X/5)+37
I have calculated at what height I would be after 3 minutes by substituting X=3 in the above equation. However, I need to calculate at what times I would be 30m off the ground. Can you please tell me if I am on the right track and how to calculate the time?
Many thanks
Maths - Reiny, Tuesday, October 13, 2009 at 8:28am
I agree with your equation, so let' set it equal to 30
30 = -35cos(2pi*X/5)+37
-7 = -35cos(2pi*X/5)
.2 = cos(2pi*X/5)
take the inverse cosine to get
2pi*X/5 = 1.369438
x = 1.09 minutes
check it by repeating the same steps you did finding the height at 3 minutes.
Can I still use the original formula
h = -35cos(2pi*X/5)+37
I don't understand what part changes to make it one minute into the ride. Appreciate any help, orignal question below.
have a trig question regarding a ferris wheel, radius 35m, axles 37m, clockwise direction, rotates twice every 10 mins. I have calculated the following function:
h = -35cos(2pi*X/5)+37
I have calculated at what height I would be after 3 minutes by substituting X=3 in the above equation. However, I need to calculate at what times I would be 30m off the ground. Can you please tell me if I am on the right track and how to calculate the time?
Many thanks
Maths - Reiny, Tuesday, October 13, 2009 at 8:28am
I agree with your equation, so let' set it equal to 30
30 = -35cos(2pi*X/5)+37
-7 = -35cos(2pi*X/5)
.2 = cos(2pi*X/5)
take the inverse cosine to get
2pi*X/5 = 1.369438
x = 1.09 minutes
check it by repeating the same steps you did finding the height at 3 minutes.
Answers
Answered by
Reiny
I am not too sure what you mean by "if we start the analysis one minute into the ride"
Where do you want the chair to be at 1 minute. The way it is, the chair would be 26.2 m high, (which also confirms my answer of 30 m at 1.09 minutes)
Do you want the chair to be at a minimum height of 2 m when the time is 1 minute?
If that is the case, we will have to perform a phase shift on our equation.
So we want h = 2 at t=1, rather than t=0
this will do it:
h = -35cos(2pi/5)(X-1) + 37
check: remember it takes 5 minutes for one rotation.
t = 1, h = 2 , at the bottom
t = 2.25 , h = 37, the height of the axle, check!
t = 3.5, h = 72 , the height of axle + radius of wheel, check!
t = 4.75, h = 37 , coming down, height of axle, check!
t = 6 , h = 2, back at the bottom, check!
In the original equation, using t values of 0, 1.25, 2.5, 3.75 and 5 will yield the same heights.
(That is how I checked if your equation was valid)
BTW, I gave you a time of 1.09 minutes for a height of 30 m.
That would be on the way up, of course you would reach another height of 30 m on your way down, which would be at (5-1.09) or 3.91 min.
repeatedly adding 5 minutes to these answers would produce all the times that the chair is 30 m high.
t =
Where do you want the chair to be at 1 minute. The way it is, the chair would be 26.2 m high, (which also confirms my answer of 30 m at 1.09 minutes)
Do you want the chair to be at a minimum height of 2 m when the time is 1 minute?
If that is the case, we will have to perform a phase shift on our equation.
So we want h = 2 at t=1, rather than t=0
this will do it:
h = -35cos(2pi/5)(X-1) + 37
check: remember it takes 5 minutes for one rotation.
t = 1, h = 2 , at the bottom
t = 2.25 , h = 37, the height of the axle, check!
t = 3.5, h = 72 , the height of axle + radius of wheel, check!
t = 4.75, h = 37 , coming down, height of axle, check!
t = 6 , h = 2, back at the bottom, check!
In the original equation, using t values of 0, 1.25, 2.5, 3.75 and 5 will yield the same heights.
(That is how I checked if your equation was valid)
BTW, I gave you a time of 1.09 minutes for a height of 30 m.
That would be on the way up, of course you would reach another height of 30 m on your way down, which would be at (5-1.09) or 3.91 min.
repeatedly adding 5 minutes to these answers would produce all the times that the chair is 30 m high.
t =
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.