Asked by Kaz
9t^4 + 6t^2 + 2
the problem is asking for the value of t at which the graph is at it's minimum.
what i did was set t^4 to x^2 and t^2 to x. So that means I have 9x^2 + 6x + 2.
Completing the square and the vertex formula gave me the same answer of -1/3 as x. So setting that equal to t^2 and solving gives me a no solution answer. The same thing happens when I try to solve it using the quad formula. 36-72 shows up in the radical, which is negative.
So I'm at a loss, my answer comes out to be undefined.
But the answer to the problem (as stated in the back of the book) is x=0. Also when I put it in a graphing calculator the minimum is indeed 2 at t=0.
As far as I know, undefined is not the same as 0. I must be doing something wrong. Any help is appreciated. Thank you.
the problem is asking for the value of t at which the graph is at it's minimum.
what i did was set t^4 to x^2 and t^2 to x. So that means I have 9x^2 + 6x + 2.
Completing the square and the vertex formula gave me the same answer of -1/3 as x. So setting that equal to t^2 and solving gives me a no solution answer. The same thing happens when I try to solve it using the quad formula. 36-72 shows up in the radical, which is negative.
So I'm at a loss, my answer comes out to be undefined.
But the answer to the problem (as stated in the back of the book) is x=0. Also when I put it in a graphing calculator the minimum is indeed 2 at t=0.
As far as I know, undefined is not the same as 0. I must be doing something wrong. Any help is appreciated. Thank you.
Answers
Answered by
MathMate
If it is precalculus, you're not expected to use derivatives, which incidentally will give you x=0 as the answer.
I do not know if you teacher has shown you a systematic method to calculate the minimum for a quartic. In this particular situation, we can find the answer rapidly by taking advantage of the way the function is made up.
f(x) = 9x⁴ + 6x² + 2
is made up of three terms, two of which are non-negative. So the minimum is 2 when both of the non-negative terms vanish. It is obvious that 9x⁴ and 6x² vanish at x=0. The vertex is therefore (0,2).
I also note that f(x) can be composed by goh(x) where g(x)=9x²+6x+2 and h(x)=x². Not that this property will help us find the vertex without the use of calculus, as far as I know.
Also, I have not come across a method to find the vertex for a general quartic without the use of calculus. If anyone would share the answer, it would be appreciated.
I do not know if you teacher has shown you a systematic method to calculate the minimum for a quartic. In this particular situation, we can find the answer rapidly by taking advantage of the way the function is made up.
f(x) = 9x⁴ + 6x² + 2
is made up of three terms, two of which are non-negative. So the minimum is 2 when both of the non-negative terms vanish. It is obvious that 9x⁴ and 6x² vanish at x=0. The vertex is therefore (0,2).
I also note that f(x) can be composed by goh(x) where g(x)=9x²+6x+2 and h(x)=x². Not that this property will help us find the vertex without the use of calculus, as far as I know.
Also, I have not come across a method to find the vertex for a general quartic without the use of calculus. If anyone would share the answer, it would be appreciated.
Answered by
MathMate
last paragraph: `"the vert<b>ices</b> for a general quartic ".
Also, I have not mentioned that graphing by tabulation almost always works for finding extrema of polynomials, although a good judgment goes a long way.
Also, I have not mentioned that graphing by tabulation almost always works for finding extrema of polynomials, although a good judgment goes a long way.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.