Asked by Melody
Two pistons A & B move backwards and forwards in a cyclinder. Distance x cm of the right hand end of piston A from point 0 at time t seconds is x=3sin(2t)+3 and the distance y cm of the left hand end of piston B by formula y=2sin(3t-pi/4)+8.5
The pistons are set in motion at t=0
How do I work out the minimun distance between the pistons and the time it occurs? I am really lost on this, can you please help.
Thanks
The pistons are set in motion at t=0
How do I work out the minimun distance between the pistons and the time it occurs? I am really lost on this, can you please help.
Thanks
Answers
Answered by
Reiny
Looks like a rather nasty question
I see the distance (d) as
d = 3sin(2t)+3 + 2sin(3t-pi/4)+8.5
= 3sin(2t)+ 2sin(3t-pi/4)+ 11.5
I first ran this through a primitive graphing program I have, and it showed the above to have a period of 2pi, and a minimum value roughly between t = 1.5 and t = 1.7
to get exact answers is a messy Calculus problem
dd/dt = 6cos(2t) - 6cos(3t-pi/4)
= 0 for a max/min of d
So we have to solve
6cos(2t) - 6cos(3t-pi/4) = 0 or
cos(2t) - cos(3t-pi/4) = 0
the trouble is that we need to have our trig functions contain the same period.
we know cos 2t = 2cos^2(t) - 1
and cos(3t - pi/4) = cos3tcospi/4 + sin3tsinpi/4
= (1/√2)(cos3t + sin3t)
now there are expansion formulas for
cos 3x and sin 3x in terms of cos x, but I have a feeling that the question couldn't possibly be that messy.
Are you using graphig calculators?
What level is this?
I see the distance (d) as
d = 3sin(2t)+3 + 2sin(3t-pi/4)+8.5
= 3sin(2t)+ 2sin(3t-pi/4)+ 11.5
I first ran this through a primitive graphing program I have, and it showed the above to have a period of 2pi, and a minimum value roughly between t = 1.5 and t = 1.7
to get exact answers is a messy Calculus problem
dd/dt = 6cos(2t) - 6cos(3t-pi/4)
= 0 for a max/min of d
So we have to solve
6cos(2t) - 6cos(3t-pi/4) = 0 or
cos(2t) - cos(3t-pi/4) = 0
the trouble is that we need to have our trig functions contain the same period.
we know cos 2t = 2cos^2(t) - 1
and cos(3t - pi/4) = cos3tcospi/4 + sin3tsinpi/4
= (1/√2)(cos3t + sin3t)
now there are expansion formulas for
cos 3x and sin 3x in terms of cos x, but I have a feeling that the question couldn't possibly be that messy.
Are you using graphig calculators?
What level is this?
Answered by
Reiny
Can somebody see through the above mess?
Am I on the wrong track?
Am I on the wrong track?
Answered by
bobpursley
I see the distance between the pistons as y-x. It is so hard to see without a diagram.
d= 2sin(3t-pi/4)+8.5 -3sin(2t)+3
Then proceed as in Dr Reiny's solution.
In past days, we would have put this on the analogue computer and ran a graph for few seconds.
d= 2sin(3t-pi/4)+8.5 -3sin(2t)+3
Then proceed as in Dr Reiny's solution.
In past days, we would have put this on the analogue computer and ran a graph for few seconds.
Answered by
MathMate
I think I have made some headway.
I started from Reiny's result
cos(2t) - cos(3t-pi/4) = 0
which I validated as correct.
By equating the two cosines, I conclude that:
2t + 2kπ = 3t-π/4
after adding 2kπ for generality, which gives
t = π/4 + 2kπ
Numerical solutions are: ... -5.5, 0.78, 7.07, ...
Since cosine is an even function, one of the arguments of cosine could be negative, therefore
-2t + 2kπ = 3t - %pi;/4
which gives
t=(1/5)(π/4+2kπ)
Numerical solutions are: ... -6.12, -4.86, -3.61, -1.1, 0.157, 1.41, 2.67, 3.92, 5.18, 6.44 ...
These results can be verified in the graphed links below:
for the function:
http://img62.imageshack.us/i/1255515491func.png/
for the derivative:
http://img379.imageshack.us/i/1255515491deriv.png/
I started from Reiny's result
cos(2t) - cos(3t-pi/4) = 0
which I validated as correct.
By equating the two cosines, I conclude that:
2t + 2kπ = 3t-π/4
after adding 2kπ for generality, which gives
t = π/4 + 2kπ
Numerical solutions are: ... -5.5, 0.78, 7.07, ...
Since cosine is an even function, one of the arguments of cosine could be negative, therefore
-2t + 2kπ = 3t - %pi;/4
which gives
t=(1/5)(π/4+2kπ)
Numerical solutions are: ... -6.12, -4.86, -3.61, -1.1, 0.157, 1.41, 2.67, 3.92, 5.18, 6.44 ...
These results can be verified in the graphed links below:
for the function:
http://img62.imageshack.us/i/1255515491func.png/
for the derivative:
http://img379.imageshack.us/i/1255515491deriv.png/
Answered by
Reiny
Of course!
How simple was that step, eh?
And here I was about to enter the mathematical hinterland.
Thank you!
How simple was that step, eh?
And here I was about to enter the mathematical hinterland.
Thank you!
Answered by
MathMate
That's what happens when you know a lot!
Answered by
bobpursley
Nice work.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.