Asked by Carolina
find the der of
y= x^(lnx)
thanks
y= x^(lnx)
thanks
Answers
Answered by
MathMate
Use the function of a function rule, namely
dy/dx = dy/dy . du/dx
substitute u=log(x)
and find the derivative of
d(x^u)/du then multiply by du/dx.
dy/dx = dy/dy . du/dx
substitute u=log(x)
and find the derivative of
d(x^u)/du then multiply by du/dx.
Answered by
Carolina
ummm.. i don't understand your language!
can you explain that in baby terms? thanks!
can you explain that in baby terms? thanks!
Answered by
Reiny
how about this
take ln of both sides
ln y = ln(x^lnx)
ln y = lnx(lnx) = (lnx)^2
now differentiate implicitly
(dy/dx)/y = 2lnx * 1/x
dy/dx = y(2lnx)/x
= (x^lnx) (2lnx)/x
somebody please check this, I have been making some silly mistakes today.
take ln of both sides
ln y = ln(x^lnx)
ln y = lnx(lnx) = (lnx)^2
now differentiate implicitly
(dy/dx)/y = 2lnx * 1/x
dy/dx = y(2lnx)/x
= (x^lnx) (2lnx)/x
somebody please check this, I have been making some silly mistakes today.
Answered by
Carolina
did u get
e^(lnx) / x^2 ??
e^(lnx) / x^2 ??
Answered by
MathMate
I will try with an example.
Use the function of a function rule, namely
dy/dx = dy/dy . du/dx
substitute u=log(x)
and find the derivative of
d(x^u)/du then multiply by du/dx.
Suppose y=sin(x²)
We know how to differentiate sin(x), and how to do x², but we're not sure how to find the derivative of sin(x²).
So let u=x²
then
y=sin(u)
dy/du = cos(u)
We also know that
du/dx = d(x²)/dx = 2x
So, by the chain rule,
dy/dx = dy/du.du/dx = 2xcos(x²)
You can apply the same procedure to your problem using u=ln(x).
Use the function of a function rule, namely
dy/dx = dy/dy . du/dx
substitute u=log(x)
and find the derivative of
d(x^u)/du then multiply by du/dx.
Suppose y=sin(x²)
We know how to differentiate sin(x), and how to do x², but we're not sure how to find the derivative of sin(x²).
So let u=x²
then
y=sin(u)
dy/du = cos(u)
We also know that
du/dx = d(x²)/dx = 2x
So, by the chain rule,
dy/dx = dy/du.du/dx = 2xcos(x²)
You can apply the same procedure to your problem using u=ln(x).
Answered by
MathMate
For Carolina,
There is no e^x in the answer.
The derivative of log(x) is 1/x.
Also,
Reiny's answer is right.
Mine comes up to
2*x^(log(x)-1)*log(x)
which is the same thing.
There is no e^x in the answer.
The derivative of log(x) is 1/x.
Also,
Reiny's answer is right.
Mine comes up to
2*x^(log(x)-1)*log(x)
which is the same thing.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.