Asked by Melody
I have a trig question regarding a ferris wheel, radius 35m, axles 37m, clockwise direction, rotates twice every 10 mins. I have calculated the following function:
h = -35cos(2pi*X/5)+37
I have calculated at what height I would be after 3 minutes by substituting X=3 in the above equation. However, I need to calculate at what times I would be 30m off the ground. Can you please tell me if I am on the right track and how to calculate the time?
Many thanks
h = -35cos(2pi*X/5)+37
I have calculated at what height I would be after 3 minutes by substituting X=3 in the above equation. However, I need to calculate at what times I would be 30m off the ground. Can you please tell me if I am on the right track and how to calculate the time?
Many thanks
Answers
Answered by
Reiny
I agree with your equation, so let' set it equal to 30
30 = -35cos(2pi*X/5)+37
-7 = -35cos(2pi*X/5)
.2 = cos(2pi*X/5)
take the inverse cosine to get
2pi*X/5 = 1.369438
x = 1.09 minutes
check it by repeating the same steps you did finding the height at 3 minutes.
30 = -35cos(2pi*X/5)+37
-7 = -35cos(2pi*X/5)
.2 = cos(2pi*X/5)
take the inverse cosine to get
2pi*X/5 = 1.369438
x = 1.09 minutes
check it by repeating the same steps you did finding the height at 3 minutes.
Answered by
Melody
Many thanks, I understand that now.
I have another question I am stuck on also. How do I get an equation for the height of the car on the ferris wheel over a 10 minute period if we start the analysis one minute into the ride.
Can I still use the original formula
h = -35cos(2pi*X/5)+37
I don't understand what part changes to make it one minute into the ride. Appreciate any help.
I have another question I am stuck on also. How do I get an equation for the height of the car on the ferris wheel over a 10 minute period if we start the analysis one minute into the ride.
Can I still use the original formula
h = -35cos(2pi*X/5)+37
I don't understand what part changes to make it one minute into the ride. Appreciate any help.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.