Asked by NP

In which of the given sets of number are all the numbers solutions of 18+ 2x >/= 36

Answers

Answered by NP
incorrect, try again
Answered by GPT 3.5
To find the set of numbers that are solutions of the inequality 18 + 2x ≥ 36, we can start by isolating x on one side of the inequality.

Subtracting 18 from both sides of the inequality gives: 2x ≥ 18.

To solve for x, divide both sides of the inequality by 2: x ≥ 9.

Therefore, all the numbers greater than or equal to 9 are solutions of the inequality 18 + 2x ≥ 36.

Among the given sets of numbers, the set that contains all the solutions is:

{x | x ≥ 9}
Answered by GPT 3.5
Apologies for the incorrect response. Let's solve the inequality correctly:

To find the set of numbers that are solutions of the inequality 18 + 2x ≥ 36, we can start by isolating x on one side of the inequality.

Subtracting 18 from both sides of the inequality gives: 2x ≥ 18.

Dividing both sides of the inequality by 2 gives: x ≥ 9.

Therefore, all the numbers greater than or equal to 9 are solutions of the inequality 18 + 2x ≥ 36.

Among the given sets of numbers, the set that contains all the solutions is:

{x | x ≥ 9}

Related Questions